
art and LArSoft course schedule

August 3-7, 2015

Draft version 6

Contents

1 Introduction 2

2 Monday 3

2.1 Session 1: Basics of C++ . 3

2.2 Session 2: Basics of objects . 3

2.3 Session 3: Basic data structures 4

2.4 Session 4: Framework introduction 4

2.5 Session 5: Setup for using art . 4

2.6 Session 6: Setting up for development of experiment code 4

3 Tuesday 4

3.1 Session 7: More module interface 5

3.2 Session 8: Details of module configuration 5

3.3 Session 9: Multiple instances of a module 5

3.4 Session 10: Using existing data products 5

3.5 Session 11: Making histograms. 5

3.6 Session 12: Running multiple modules 6

4 Wednesday 6

4.1 Session 13: Creating a Producer 6

4.2 Session 14: Inventing a new data product 6

4.3 Session 15: Controlling output 7

1

4.4 Session 16: Introducing iterative algorithm development. 7

4.5 Session 17: Writing a new algorithm. 7

4.6 Session 18: Using the algorithm in a producer 7

5 Thursday 7

5.1 Session 19: Some additional art facilities 8

5.2 Session 20: Using Assns and smart query objects 8

5.3 Session 21: Creating Assns . 8

5.4 Session 22: Good art workflow 8

5.5 Session 23: Debugging . 9

5.6 Session 24: More debugging . 9

6 Friday 9

6.1 Session 25: Introduction to LArSoft 9

6.2 Session 26: How to use LArSoft 9

6.3 Session 27: How to contribute new code to LArSoft 10

6.4 Session 28: LArSoft Algorithms and Services 10

6.5 Session 29: Using LArSoft for detector simulation and event
generation . 10

1 Introduction

This is a draft schedule for the art/LArSoft course for the summer of 2015. The
course is scheduled to take place August 3-7, 2015, at Fermilab.

The goal of the course is to take physicists with basic C++ skills and start them
on the path to be able to:

1. develop analysis, simulation, and reconstruction code of production quality
in the art framework environment,

2. develop algorithms of sufficient quality to be able to extend the shared
LArSoft and art products.

2

The course is aimed at relative newcomers to art, but not for complete newcomers
to C++. A statement of prerequisites, along with some suggested references,
is available at https://cdcvs.fnal.gov/redmine/projects/art-larsoft-course/wiki/
Prerequisites. Much of the course is based on the art Workbook, available at
https://web.fnal.gov/project/ArtDoc/Pages/workbook.aspx.

This document provides a brief introduction to the subject matter for each of
the capsules in the course. Most capsules include a brief introductory talk and a
longer period in which students work on exercises.

The final day is specific to LArSoft, and is intended for relative newcomers to
LArSoft.

2 Monday

The goal of Monday morning is to get students up to speed on some of the critical
parts of C++ upon which we will rely for the entire course. We will introduce
some of the basics of good coding practice. Some registrants for the course might
not need this material. The material is designed so that such students can skip
this session. This first morning is NOT intended as an introduction to C++ for
those who do not meet the prerequisites described at the web page above.

The goal of Monday afternoon is to introduce people to the parts of the framework,
and to the environment in which framework programs are run.

2.1 Session 1: Basics of C++

1 hour: 20 minutes talk, 30 minutes working, 10 minutes wrap-up.

The meaning of pointers and references. Function calling and argument passing
(by reference and value); function return values. Compiling and linking; creating
dynamic libraries. Understanding the difference between compilation and link
errors.

2.2 Session 2: Basics of objects

1 hour: 20 minutes talk, 30 minutes working, 10 minutes wrap-up.

Object lifetimes. Controlling resources (e.g. memory) using object lifetimes
(RAII). Use of shared_ptr and unique_ptr. Avoiding use of new and delete;
avoiding use of static.

3

https://cdcvs.fnal.gov/redmine/projects/art-larsoft-course/wiki/Prerequisites
https://cdcvs.fnal.gov/redmine/projects/art-larsoft-course/wiki/Prerequisites
https://web.fnal.gov/project/ArtDoc/Pages/workbook.aspx

2.3 Session 3: Basic data structures

1 hour: 20 minutes talk, 30 minutes working, 10 minutes wrap-up.
Introduction to correct use of std library components array, vector, map, and
unordered_map. Performance characteristics; when to use each. Relying on
move constructor for efficient use. Correct initialization.

2.4 Session 4: Framework introduction

30 minutes, talk.
Overview of the major features of the framework; what the framework does for
you. How your code gets integrated into a framework program.

2.5 Session 5: Setup for using art

1.5 hours: 20 minutes talk, 45 minutes working, 25 minutes wrap-up.
Based on workbook exercise 1. Introduces the art runtime system. Basic
understanding of UPS products and the setup command. Basic execution of the
art executable. Creating output files. Basic introduction to FHiCL configuration
file for art.

2.6 Session 6: Setting up for development of experiment
code

2 hours: 20 minutes talk, 90 minutes work, 10 minutes wrap-up.
Based on workbook exercise 2; may update to use use mrb rather than cetbuild-
tools directly.
Goes all the way from cloning a git repository with source code, building what
has been cloned, up to looking at a module, running artmod to create a module.
Exercises include:

1. Fixing a canned compilation failure
2. Fixing a canned link failure
3. Fixing a failure to find a module

3 Tuesday

The goal of Tuesday is to familiarize people with the development environment,
in the context of starting to analyze data (i.e. making histograms) in the art
setting.

4

3.1 Session 7: More module interface

1 hour: 20 minutes talk, 30 minutes work, 10 minutes wrap-up.

Introduce re-establishing a development environment after logging out of a
previous shell session. Introduce the full EDAnalyzer interface; introduction to
Run and SubRun objects (but not as containers of products yet). Understanding
the module lifecycle. Introduce Tracer service.

Based on workbook exercise 3.

3.2 Session 8: Details of module configuration

1 hour: 20 minutes talk, 30 minutes work, 10 minutes wrap-up.

How to correctly write a module constructor. How to use ParameterSet objects.
How to handle errors in constructors. Revisit RAII here, and use of compiler-
generated member functions when possible. Revisit override keyword. Introduce
art::Exception class.

Based on workbook exercise 4.

3.3 Session 9: Multiple instances of a module

1 hour: 20 minutes talk, 30 minutes work, 10 minutes wrap-up.

Understanding module instances, and the concept of having more than one
instance of the same module class in a workflow. Understanding the ordering
guarantee (after producers and filters, but not ordered relative to each other)
provided by art for analyzers (and output).

Based on workbook exercise 5.

3.4 Session 10: Using existing data products

30 minutes: 20 minutes talk, 10 minutes questions.

How to find data products, how to read headers to understand data products.
Introduction to some good data product design practices.

3.5 Session 11: Making histograms.

2 hours: 20 minutes talk, 90 minutes work, 10 minutes questions.

Accessing event data products; introduction of details of module label and module
type. Using ValidHandle; Handle is for special cases only. Simple configuration

5

of analyzer modules; understanding module execution order guarantees provided
by art.

Using data product classes, iterating through sequences, filling histograms.
Introduction to TFileService: how to configure, where it writes output.

Using Standard Library algorithms and lambda expressions to loop over data
products. Reasons to prefer SL algorithms to explicit loops; avoiding fencepost
errors, avoiding trivial inefficiencies, avoiding needless copies and conversions.

Combining examples 6 and 7 of the workbook, possibly modified to use LArSoft
data products.

3.6 Session 12: Running multiple modules

1.5 hours: 20 minutes talk, 60 minutes work, 10 minutes questions.

Run a chain of reconstruction algorithms. Write an analyzer that compares data
products from two different algorithms. Practice using art::InputTag to identify
products; practice seeing how the configuration file determines how products are
labeled. Introduction to paths, and the order in which producers are executed.
How the framework avoids running the same configured module more than once.

4 Wednesday

The goal of Wednesday is to introduce people to writing producers, using good
software development practices: iterative code development, writing modular
code, and testing. We also introduce the creation of new data products.

4.1 Session 13: Creating a Producer

1 hour: 20 minutes talk, 30 minutes work, 10 minutes wrap-up.

Canonical form of a producer (get/do/put pattern). How Event::put works; how
data products are labeled. How the FHiCL file controls each producer’s module
label and the process name. How to create an instance of a data product.

4.2 Session 14: Inventing a new data product

1 hour: 20 minutes talk, 30 minutes work, 10 minutes wrap-up.

Design guidelines for new data products following the art data product design
guide.

6

https://cdcvs.fnal.gov/redmine/projects/art/wiki/Data_Product_Design_Guide
https://cdcvs.fnal.gov/redmine/projects/art/wiki/Data_Product_Design_Guide

Producing dictionaries for ROOT. We are currently using ROOT5. We may be
in the process of moving to ROOT 6 around the time of the class. This may
give us some problems to solve.

4.3 Session 15: Controlling output

1 hour: 20 minutes talk, 30 minutes work, 10 minutes wrap-up.

Introduce the output system’s ability to do event selection and product selection.
Detailed configuration of RootOutput. Keep/drop lists. Configuration and
meaning of drop on input.

Controlling compression levels. Writing multiple output files.

4.4 Session 16: Introducing iterative algorithm develop-
ment.

30 minutes: 20 minutes talk, 10 minutes questions.

Introduce the ideas behind iterative development of algorithms, and designing
code for testability.

4.5 Session 17: Writing a new algorithm.

2 hours: 20 minutes talk, 1.5 hours work, 10 minutes wrap-up.

Implement in code an algorithm, suitable for coding in a single module, specified
as part of the problem. Write unit tests for the algorithm. Use the build tools
to build and run the tests. Illustrate how to work on the algorithm outside of
the framework. Illustrate a clear separation between unit testing and physics
validation.

4.6 Session 18: Using the algorithm in a producer

30 minutes: 5 minutes talk, 20 minutes work, 5 minutes wrap-up.

Use artmod to generate the skeleton of a producer. Insert the algorithm written
in the previous session into the producer. Write the integration test that executes
the producer.

5 Thursday

The goal of Thursday is to gain more experience in modularity and to introduce
the use of some software development tools: a debugger and Valgrind.

7

This includes the development of a set of algorithms (only need two) that
need to be split up between modules. This extends the previous day’s work.
Introduce people to some of the more advanced framework tools (association
collections, FindOne and FindMany smart query objects, services), as well as
the art command line. It also include some debugging exercises.

5.1 Session 19: Some additional art facilities

1 hour: 20 minutes talk, 30 minutes work, 10 minutes wrap-up.

Explanation of full set of art command-line options. Use of configuration
dumping facilities. Introduction to the most important of the standard services:
TimeTracker, MemoryTracker, and RandomNumberGenerator.

Examples will not include writing new code, but in using the TimeTracker,
MemoryTracker and Tracer services with existing code.

5.2 Session 20: Using Assns and smart query objects

1 hour: 20 minutes talk, 30 minutes work, 10 minutes wrap-up.

Use a canned module that creates some product from the output of Wednesday’s
producer, and Assns between that product and Wednesday’s product.

Write an analyzer that uses FindOne or FindMany to obtain information to fill
histograms. This doesn’t directly require that users see the Assns object.

5.3 Session 21: Creating Assns

1 hour: 20 minutes talk, 30 minutes work, 10 minutes wrap-up.

Write a producer that does something like what the “canned producer” above
does. Understand how to create Assns objects.

5.4 Session 22: Good art workflow

1 hour: 20 minutes talk, 30 minutes work, 10 minutes wrap-up.

Using advanced features of FHiCL, and recommended practice for creating
maintainable configuration files. Using FHiCL PROLOG, @sequence, @table,
replacement syntax, @nil, and @erase.

Understanding how to organize paths, understanding how art deals with the
same module label appearing in multiple paths.

This section will not have students writing C++ code; they will be using provided
modules to create workflows using the various features of FHiCL.

8

5.5 Session 23: Debugging

1 hour: 10 minutes talk, 40 minutes work, 10 minutes wrap-up.

Introduction to using a debugger to understand code and to isolate a problem in
code. In the work session, students are presented with code examples containing
failures, and they need to find the failures.

5.6 Session 24: More debugging

1 hour: 10 minutes talk, 40 minutes work, 10 minutes wrap-up.

Introduction to using Valgrind to help find problems. Interpreting Valgrind
output, using suppression files. In the work session, students are presented with
code examples containing failures, and they need to find the failures.

6 Friday

Friday’s schedule is specific to LArSoft.

The goal on Friday is to give an introduction into the design philosophy and
content of the LArSoft products, and providing hands-on work sessions using it.

6.1 Session 25: Introduction to LArSoft

30 min: 30 minutes talk

This session will cover what is LArSoft and its specific data structures; we will
describe the structure and working of a LArTPC detector, and translation of
physics observables to data structures. We will also discuss the design principles
of LArSoft.

6.2 Session 26: How to use LArSoft

45 min: 15 minutes talk, 25 minutes work, 5 minutes wrap-up.

This session will describe LArSoft code organization and different repositories.
Students will learn how to get/build/test LArSoft code using mrb.

Hands-on working session: Setup the build environment. Checkout code, build,
run tests.

9

6.3 Session 27: How to contribute new code to LArSoft

1 hr 30 min: 20 min talk, 60 min work, 10 min wrap-up

In this session, students will learn how to make changes in the code, and how
to contribute new code. We will demonstrate application of LArSoft design
principles to actual code.

Hands-on working session: Complete a simple LAr reconstruction task by creating
a module, compiling, testing and pushing it to the repository.

6.4 Session 28: LArSoft Algorithms and Services

1 hr 30 min: 15 minutes talk, 70 minutes work, 5 minutes wrap-up.

In this session, we will briefly describe LArSoft simulation, reconstruction and
analysis algorithms. We will introduce the services available in LArSoft focusing
on the services needed to complete the exercise.

Exercise to develop a simple new algorithm within LArSoft, and expand the
module from the previous session to run it.

6.5 Session 29: Using LArSoft for detector simulation and
event generation

1 hr 30 min: 15 minutes talk, 60 minutes work, 15 minutes wrap-up.

How to configure/describe detector to LArSoft, how to change existing detector
specific geometries and response functions. How do you make use of G4, GENIE
in LArSoft? How to use event display in LArSoft?

Wrap up and concluding presentation: Current directions and ideas for the
future.

10

	Introduction
	Monday
	Session 1: Basics of C++
	Session 2: Basics of objects
	Session 3: Basic data structures
	Session 4: Framework introduction
	Session 5: Setup for using art
	Session 6: Setting up for development of experiment code

	Tuesday
	Session 7: More module interface
	Session 8: Details of module configuration
	Session 9: Multiple instances of a module
	Session 10: Using existing data products
	Session 11: Making histograms.
	Session 12: Running multiple modules

	Wednesday
	Session 13: Creating a Producer
	Session 14: Inventing a new data product
	Session 15: Controlling output
	Session 16: Introducing iterative algorithm development.
	Session 17: Writing a new algorithm.
	Session 18: Using the algorithm in a producer

	Thursday
	Session 19: Some additional art facilities
	Session 20: Using Assns and smart query objects
	Session 21: Creating Assns
	Session 22: Good art workflow
	Session 23: Debugging
	Session 24: More debugging

	Friday
	Session 25: Introduction to LArSoft
	Session 26: How to use LArSoft
	Session 27: How to contribute new code to LArSoft
	Session 28: LArSoft Algorithms and Services
	Session 29: Using LArSoft for detector simulation and event generation

